个人简介
一、基本情况
郑敏玲,男,中国国民党革命委员会会员,1969年8月出生,博士,教授,硕士研究生导师。
二、招生信息
【1】招生专业:070100-数学 025200-应用统计
【2】研究方向:偏微分方程在图像处理中的应用,复杂系统动力学行为的数值模拟, 交通流模型与大数据处理、交通大数据分析
三、教育和学术背景
【1】1988年9月——1991年6月邵阳师范专科学校,数学系
【2】1999年9月——2002年6月中南大学,应用数学专业,获硕士学位
【3】2004年9月——2007年10月南京理工大学,应用数学专业,获博士学位
【4】2014年2月——2014年8月,澳大利亚昆士兰理工大学,访问学者
四、发表论文和出版专著
【1】Zhengmeng Jin, Yue Ma, Lihua Min, Minling Zheng, Variational image dehazing with a novel underwater dark channel prior, Inverse Problems and Imaging, 2025, 19: 334-354.
【2】Xiang Zheng, Minling Zheng, Prediction of urban flood inundation using Bayesian convolutional neural networks, Stochastic Environmental Research and Risk Assessment, 2024, 38: 4485-4500.
【3】Lihua Min, Xiaoyu Lian, Zhengmeng Jin, Minling Zheng, A Retinex-based Selective segmentation model for inhomogeneous images, Journal of Mathematical Imaging and Vision, 2023, 65: 437-452.
【4】Zhengmeng Jin, Jie Wang, Lihua Min, Minling Zheng,An adaptive total generalized variational model for speckle reduction in ultrasound images, Journal of the Franklin Institute,2022, 359: 8377- 8394.
【5】Minling Zheng, Zhengmeng Jin, Fawang Liu, Vo Anh, Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian, Applied Numerical Mathematics, 2022, 172: 242-258.
【6】Xingyu An, Fawang Liu, Minling Zheng, Vo V. Anh, Ian W. Tuner, A space-time spectral method for time-fractional Black-Scholes equation, Applied Numerical Mathematics, 2021, 165: 152-166.
【7】Qingxia Liu, Pinghui Zhuang, Fawang Liu, Minling Zheng, Shanzhen Chen, Radial point interpolation collocation method based approximation for 2D fractional equation models, Computers and Mathematics with Applications, 2021, 97: 153-161.
【8】Minling Zheng, Fawang Liu, Vo Anh, An effective algorithm for computing fractional derivatives and applications to fractional differential equations, International Journal of Numerical Analysis Modeling,2021,18(4): 458-480.
【9】Minling Zheng, Fawang Liu, Zhengmeng Jin, The global analysis on the spectral collocation method for time fractional Schrodinger equation, Applied Mathematics and Computation, 2020, 365: 124689.
【10】Zhengmeng Jin, Lihua Min, Michael K. Ng, Minling Zheng, Image colorization by fusion of color transfers based on DFT and variance features, Computers and Mathematics with Applications 2019, 77: 2553- 2567.
【11】Minling Zheng, Fawang Liu, Qingxia Liu, Kevin Burrage, Mattew J. Simpson, Numerical solution of the time fractional reaction-diffusion equation with a moving boundary, Journal of Computational Physics, 2017, 338:493-510.
【12】Minling Zheng, Fawang Liu, Vo Anh, Ian Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Applied Mathematical Modelling, 2016, 40: 4970-4985.
【13】Minling Zheng, Fawang Liu, Ian Turner, Vo Anh, A novel high order space-times spectral method for the time fractional Fokker-Planck equation, SIAM Journal on Scientific Computing, 2015, 37: A701-A724.
【14】郑敏玲,空间分数阶扩散方程的谱及拟谱方法,应用数学学报,38, 2015: 434-449.
【15】Yiting Huang, Minling Zheng, Pseudo-spectral method for space fractional diffusion equation, Applied Mathematics, 2013, 4: 1495-1502.
【16】Minling Zheng, Xiaoping Yang, Viscosity analysis on the Boltzmann equation, Acta Mathematica Sinica (English Series), 2012, 28: 2139-2152.
【17】Minling Zheng, Yuming Chu, On the Cauchy problem for the Fokker-Planck- Boltzmann equation with infinite initial energy, Sarajevo Journal of Mathematics, 2009, 5: 63-72.
【18】Zhongxue Lv, Xiaoping Yang, Minling Zheng, A lower semi-continuity result for some integral functional in the SBD, Acta Mathematica Sinica (English Series), 2008, 24: 297-304.
【19】郑敏玲,杨孝平,非角截断的Fokker-Planck-Boltzmann方程,数学年刊,29(A), 2008: 573-582.
【20】Minling Zheng, Xiaopuing Yang, Viscosity analysis on the spatially homogeneous Boltzmann equation, Asymptotic Analysis, 2007, 53: 13-28.
【21】郑敏玲,杨孝平,具有截断势的空间齐次Boltzmann方程的L^2逼近,应用数学学报,30, 2007: 729-742.
【22】Series Books: Fractional order systems--An overview of mathematics design,and applications for engineers (Chaprer 4 and Chapter 5), Academic Press, 2022.
五、科研项目
【1】国家自然科学基金面上项目:次调和函数的零点集与奇异集(10771102),2008.01-2010.12,28万,参与(排名5/9),已结题
【2】国家自然科学基金面上项目:最优运输中几类非线性偏微分方程和变分问题的研究(11071119),2011.01-2013.12,31万,参与(排名2/7),已结题
【3】国家自然科学基金面上项目:基于分数阶微分方程的MRI的理论和算法的研究(11771005),2018.01-2021. 12,48万,主持,已结题
【4】浙江省自然科学基金:分数阶微分方程谱元方法的研究,(LY16A010011), 2016.01-2018. 12,6万,主持,已结题