能源动力(专硕)

伍涛

来源:理学院 发布日期:2022-09-28


一、学习和工作经历

1994.09 - 1998.07,中国,南京工业大学安全工程,工学学士

1999.09 - 2002.07,中国,中国原子能科学研究院,核燃料循环与材料,理学硕士

2002.09 -2005.07,中国,北京理工大学,物理化学,理学博士

2007.04 - 2009.02,德国,美因茨大学,核环境化学,博士后

2018.08 - 2019.08,美国,华盛顿州立大学,核环境化学,访问学者

2008. 12 -2010.12,中国,湖州师范学院,材料化学,讲师

2011.01-2018.12,中国,湖州师范学院,材料化学,副教授

2019.01-至今,中国,湖州师范学院,材料化学,教授

 

二、通讯方式

办公室:工学院25-417

邮箱:twu@zjhu.edu.cn

 

三、研究方向

(1)人工智能在核素迁移研究中的应用。

(2)人工智能在处置库中膨润土回填材料性能评价中的应用。

 

四、基金项目

(1) 国家自然科学基金,12475340,机器学习研究膨润土中模拟锕系络合物的扩散机制,2025.01-2028.12在研,主持62

(2) 湖州市公益项目,低孔隙率膨润土隔离墙阻滞重金属阴离子污染物扩散的性能研究,2022.01-2024.12,在研,主持10

(3) 浙江省科学基金面上项目,LY18B070006,铁矿物对铼在膨润土中的迁移规律和机理研究、2018.01-2020.12,已结题,主持9

(4) 浙江省科学基金面上项目,LY15B070003,腐殖酸对硒在膨润土中的扩散影响及作用机理研究、2015.01-2017.12,已结题,主持8

(5) 国家自然科学基金,21207035还原状态下碘和锝在粘土矿物中的扩散机理研究2013.01-2015.12,已结题,主持25

(6) 浙江省钱江人才计划,模拟高放废液裂片元素碘在膨润土中迁移行为研究、2010.1-2012.12、结题,主持,5万。

(7) 留学回国人员科研启动基金,模拟高放废液裂片元素Sr在膨润土中的吸附和扩散行为研究、2011.04,已结题,主持,3.5万。

 

五、奖励和荣誉

1. 浙江省“钱江人才”。

2. 湖州市南太湖本土高层次人才特殊支持计划领军人才

 

六、近五年的文章列表如下:

1. J. Tian, J. Feng, J. Shen, L. Yao, J. Wang, T. Wu(通讯), Y. Zhao(通讯), Prediction of radionuclide diffusion enabled by missing data imputation and ensemble machine learning, Nucl. Sci. Tech., (2025) Accepted. (中科院SCI一区,IF = 3.6 )

2. X. Shi, P. Zhang#, J. Feng, K. Xu, Z. Fang, J. Tian, T. Wu通讯, Improving hydraulic conductivity prediction of bentonite using machine learning with generative adversarial network-based data augmentation, Construction and Building Materials, 462 (2025) 139962. (中科院SCI一区IF = 7.4 )

3. T. Wu通讯, J. Tian, X. Shi, Z. Li, J. Feng, Z. Feng, Q. Li, Predicting anion diffusion in bentonite using hybrid machine learning model and correlation of physical quantities, Science of The Total Environment, 946 (2024) 174363. (中科院SCI一区IF = 8.2 )

4. [11] X. Shi, J. Tian, J. Shen, Z. Feng, J. Feng, T. Wu通讯, Q. Li, Application of machine learning in predicting the apparent difusion coefcient of Se(IV) in compacted bentonite, J. Radioanal. Nucl. Chem., 333 (2024) 58115821. (中科院SCI区,IF = 1.5 )

5. Z. Feng, J. Tian, T. Wu通讯, G. Wei, Z. Li, X. Shi, Y. Wang, Q. Li, Unveiling the Re, Cr, and I diffusion in saturated compacted bentonite using machine-learning methods, Nucl. Sci. Tech., 35 (2024) 93. (中科院SCI一区,IF = 3.6 )

6. Z. Feng, J. Tian, X. Shi, C. Wang, T. Wu通讯, Analyzing porosity of compacted bentonite via through diffusion method, J. Radioanal. Nucl. Chem., 333 (2024) 11851193. (中科院SCI区,IF = 1.5 )

7. Z. Feng, J. Feng, J. Tian, X. Shi, D. Shao, T. Wu通讯, Q. Shen(通讯), Predicting the diffusion of CeEDTA and CoEDTA2− in bentonite using decision tree hybridized with particle swarm optimization algorithms, Appl. Clay Sci., 262 (2024) 107596. (中科院SCItopIF = 5.3 )

8. T. Wu通讯, Y. Hong, D. Shao, J. Zhao, Z. Feng, Experimental and modeling study of the diffusion path of Ce(III)-EDTA in compacted bentonite, Chem. Geo., 636 (2023) 121639. (中科院SCI二区topIF = 3.9 )

9. T. Wu, Z. Feng, Z. Geng, M. Xu, Q. Shen通讯, Restriction of Re(VII) and Se(IV) diffusion by barite precipitation in compacted bentonite, Appl. Clay Sci., 232 (2023) 106803. (中科院SCI二区,IF = 5.6 )

10. Z. Feng, Z. Gao, Y. Wang, T. Wu通讯, Q. Li, Application of machine learning to study the effective diffusion coefficient of Re(VII) in compacted bentonite, Appl. Clay Sci., 243 (2023) 107076. (中科院SCI二区,IF = 5.6 )

11. T. Wu通讯, Z. Geng, Z. Feng, G. Pan, Q. Shen, Diffusion of Re(VII), Se(IV) and Cr(VI) in compacted GMZ bentonite, J. Radioanal. Nucl. Chem., 331 (2022) 2311-2317. (中科院SCI区,IF = 1.9 )

12. Z. Geng, Z. Feng, H. Li, Y. Wang, T. Wu通讯, Porosity investigation of compacted bentonite using through-diffusion method and multi-porosity model, Appl. Geochem., 146 (2022) 105480. (中科院SCI区,IF = 3.1 )

13. T. Wu通讯, Z. Geng, Q. Shen, Y. Guo, J. Lan, Capillary method and molecular dynamics study of the diffusion and molecular structures of vanadium(IV)-ligand complexes, J. Radioanal. Nucl. Chem., 329 (2021) 1537-1544. (中科院SCI区,IF = 1.8 )

14. T. Wu通讯, Y. Yang#, Z. Wang, Q. Shen, Y. Tong, M. Wang(通讯), Anion diffusion in compacted clays by pore-scale simulation and experiments, Water Resour. Res., 56 (2020) e2019WR027037. (中科院SCI区,IF = 5.2 )