学术信息

数学学科2021系列学术报告二十四

来源:理学院 发布日期:2021-12-08

报告人: 周青山

题目:  Teichmullers problem on Gromov hyperbolic domains

时间:20211210(星期五), 14:00-15:00

腾讯会议ID780 248 455

会议密码:211210

 

摘要:Given a domain D, f is K-quasiconformal self-map of D with identity boundary values. In this talk, we introduce some recent results on Teichmuller's problem which  

is to determine how far a given point x in D can be mapped under f. We estimate this distance between x and f(x) from the above by using two different metrics, the distance ratio metric and the quasihyperbolic metric. We study Teichmullers problem for Gromov hyperbolic domains with identity values at the boundary of infinity. As applications, we obtain results on Teichmullers  problem for quasihyperbolic uniform domains and inner uniform domains.

 

个人简介:周青山,博士,佛山科学技术学院讲师。研究兴趣为拟共形映射与度量空间上的分析。目前在Isearal J. Math., Stud. Math., J.Geom. Anal., Proc. Amer. Math. Soc., C. R. Math. Acad. Sci. Paris, Ann. Acad. Sci. Fenn. Math.等期刊发表学术论文近二十篇。主持国家自然科学基金青年项目1项,获批广东省自然科学基金1项。