报告人: 周青山
题目: Teichmuller’s problem on Gromov hyperbolic domains
时间:2021年12月10日(星期五), 14:00-15:00
腾讯会议ID:780 248 455
会议密码:211210
摘要:Given a domain D, f is K-quasiconformal self-map of D with identity boundary values. In this talk, we introduce some recent results on Teichmuller's problem which
is to determine how far a given point x in D can be mapped under f. We estimate this distance between x and f(x) from the above by using two different metrics, the distance ratio metric and the quasihyperbolic metric. We study Teichmuller’s problem for Gromov hyperbolic domains with identity values at the boundary of infinity. As applications, we obtain results on Teichmuller’s problem for quasihyperbolic uniform domains and inner uniform domains.
个人简介:周青山,博士,佛山科学技术学院讲师。研究兴趣为拟共形映射与度量空间上的分析。目前在Isearal J. Math., Stud. Math., J.Geom. Anal., Proc. Amer. Math. Soc., C. R. Math. Acad. Sci. Paris, Ann. Acad. Sci. Fenn. Math.等期刊发表学术论文近二十篇。主持国家自然科学基金青年项目1项,获批广东省自然科学基金1项。